Gene Therapy: Implications for Pharmacy Practice

John Petrich, RPh, MS
Investigational Drug Service Manager
Cleveland Clinic

Disclosures

- I have not been bribed
- I have not been corrupted
- I have no hidden alliances with rich people
- My motives are pure
Learning Objectives

- Define the foundation and general principles of gene therapy
- Review practices and handling of gene therapy products
- Describe issues that pharmacists should address now and in the future

Gene therapy involves the introduction of genetic material into an individual, or the modification of the individual’s genetic material, in order to achieve a therapeutic objective

The World Health Organization
Therapeutic options

- Single genetic conditions
- Multifactorial genetic conditions
- Acquired genetic conditions

Vectors

- Viral
- Liposomal
- Artificial Chromosomal
- Other nucleic acid (plasmid, RNA technology)
Viral vectors

- Retrovirus
- Adenovirus
- Adeno-associated virus

<table>
<thead>
<tr>
<th>Vector</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus</td>
<td>High transfection efficiency in vitro and ex vivo</td>
<td>Limited insert size capacity</td>
</tr>
<tr>
<td></td>
<td>Can infect dividing and nondividing cells</td>
<td>Short duration of expression</td>
</tr>
<tr>
<td></td>
<td>Wide host cell range</td>
<td>Immunogenic (repeat dosing therefore ineffective)</td>
</tr>
<tr>
<td>Retrovirus</td>
<td>No immune response</td>
<td>Only infects dividing cells</td>
</tr>
<tr>
<td></td>
<td>Reasonable duration of expression</td>
<td>Limited insert size capacity</td>
</tr>
<tr>
<td></td>
<td>Integrates into host cell genome</td>
<td>Potential safety risk of insertional mutagenesis</td>
</tr>
<tr>
<td></td>
<td>High transfection efficiency ex vivo</td>
<td></td>
</tr>
<tr>
<td>Adeno-associated virus</td>
<td>Can infect dividing and nondividing cells</td>
<td>Inefficient large scale virus production</td>
</tr>
<tr>
<td></td>
<td>Reasonable duration of expression</td>
<td>Very limited insert size capacity</td>
</tr>
<tr>
<td></td>
<td>Low immunogenicity</td>
<td></td>
</tr>
</tbody>
</table>
Technical Limitations

- Identification
- Manufacturing
- Introduction
- Expression

Patient Safety

- Toxicity
- Fatality
- Interactions
- Latent effects
Ethics

- Selection
- Repair versus improvement
- Consequences

Follow-up
Biosafety Levels

- Biosafety Level 1
- Biosafety Level 2
- Biosafety Level 3
- Biosafety Level 4

Biosafety Level 2

- Standard Microbiological Practices
- Special Practices
- Safety Equipment
- Laboratory Facilities (Secondary Barriers)

www.cdc.gov
Biosafety Level 2

- Standard Microbiological Practices
- Special Practices
- Safety Equipment
- Laboratory Facilities (Secondary Barriers)
Biosafety Level 2

- Standard Microbiological Practices
- Special Practices
- Safety Equipment
- Laboratory Facilities (Secondary Barriers)
Pharmacy Handling

- Receipt and storage
- Preparation
- Dispensing
- Disposal
- Decontamination of spills
- Accidental exposure
Pharmacy Handling

- Receipt and storage
- **Preparation**
- Dispensing
- Disposal
- Decontamination of spills
- Accidental exposure
Pharmacy Handling

- Receipt and storage
- Preparation
- Dispensing
- Disposal
- Decontamination of spills
- Accidental exposure
Pharmacy Handling

- Receipt and storage
- Preparation
- Dispensing
- Disposal
- Decontamination of spills
- Accidental exposure

Conclusion

- Increased availability leads to increase in knowledge
- Increased knowledge leads to decreased uncertainty.
- Decreased uncertainty leads to confidence to select the appropriate level of caution
- Advisory Group on Gene Therapy
References

