

Objectives:

- Describe and define pharmacogenomic concepts and taxonomy
- Identify the key advances that have been made in the Human Genome Project
- 3. Describe pharmacogenomic principles and the effect on pharmacokinetics and dynamics

"A surgeon who uses the wrong side of the scalpel cuts her own fingers and not the patient;

if the same applied to drugs they would have been investigated very carefully a long time ago"

Rudolph Bucheim
Beitrage zur Arzneimittellehre, 1849

The clinical problem

- •Multiple active regimens for the treatment of most diseases
- •Variation in response to therapy

With choice comes decision

Pharmacokinetics
What the body does to the drug

Pharmacodynamics
What the drug does to the body

Pharmacogenetics vs
Pharmacogenetics

• Pharmacogenetics

• The effect of genetic variation on drug response (disposition, safety, tolerability, and efficacy)

• Pharmacogenomics

• The application of genome science (genomics) to the study of human variability in drug response

chromosome

Other Polymorphisms -**Deletion and Duplication** o Deletion (see diagram a) CYP2D6 Delete several nucleotide base pairs Loss of function; decreased metabolism Phenotype = Poor metabolizer Copy Number Variation (see diagram b) Increased copies of CYP2D6 gene Phenotype = Ultra-extensive metabolizer

Allele o Alternative forms at a genetic locus on one o Most loci - humans have 2 chromosomes which carry the same or 2 different alleles o One of several variants of a gene Usually specific site within a gene

Heterozygous vs Homozygous

- o Homozygous = two of the exact same alleles
 - Example CYP2C19*1/*1 (2 *1 alleles)
- Heterozygous = two different alleles
 - Example CYP2C19*2/*3 (one *2 and one *3 allele)

Human Genome Project

- Genomics: study of genes and their function
- Human Genome Project (HGP)
 - Began in 1990
 - Coordinated by Dept of Energy & NIH
- Working draft published (90% complete) Science & Nature Feb 2001

Human Genome Project

- o HGP Goals:
 - 1. Determine the sequence of the 3 billion **DNA** nucleotides
 - 2. Chart variations among the sequences
 - 3. Label functions of the ~ 30,000 human genes
 - 4. Address ethical, legal, and social issues

Genetic polymorphisms of drug disposition and drug targets

Growing list of published examples

- > 35 Drug metabolizing enzymes
- > 12 Drug transporters
- > 40 Drug targets

McLeod & Evans, Annu Rev Pharmacol Tox, 2001 Evans & McLeod, N Engl J Med, 2003 Weinshilboum, N Engl J Med, 2003

Resources for Pharmacogenomic Information o PharmGKB (www.pharmgkb.org) o NLM (http://ghr.nlm.nih.gov/) o JAMA 3 article series 2009 How to use an article about genetic association Author John Attia Great appendix of terms o FDA http://www.fda.gov/downloads/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm116702.pdf http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm

