Critical Drug Shortages: Management Strategies for the Nutrition Support Professional
Allison B. Blackmer, PharmD, BCPS
Melissa Pleva, PharmD, BCPS, BCNSP
-ASPEN Focused Learning Session: January 23, 2012-

General Do’s & Don’t’s of Managing Parenteral Nutrition (PN) Related Product Shortages

Do’s

- Assess each patient for appropriate indication for PN
- Consider providing nutrition via the oral/enteral route whenever possible
- Purchase only as much supply as needed
- Use neonatal/pediatric specific products ONLY for their indicated population
- Prioritize product and conserve supply for vulnerable populations
 - Neonates
 - Pediatric patients
 - PN dependent/ home PN patients
 - Short bowel syndrome
 - Malabsorption syndromes
- Increase awareness and ongoing patient monitoring for deficiencies and complications
- Minimize use of electrolyte/trace mineral additives to intravenous fluids
- Compound PN in a single location in order to avoid waste
- Report severe product shortage information to the FDA Drug Product Shortage Program
- Report patient related problems to the ISMP Medication Errors Reporting Program
- Observe and maintain compliance with product labeling, USP General Chapter 797, Pharmaceutical Compounding Sterile Preparation, and state Boards of Pharmacy

Don’ts

- Do not stockpile
- Do not use neonatal/pediatric specific products for adult patients
- Do not use adult specific products for neonatal/pediatric patients
- Do not use parenteral electrolyte/mineral products for enteral supplementation
- Do not use pediatric/neonatal multi-trace elements for adult patients.
Product Shortages Affecting Parenteral Nutrition: Alternatives, Consequences, and Special Considerations

Material adapted from ASPEN website (www.nutritioncare.org)

<table>
<thead>
<tr>
<th>Component</th>
<th>Oral options?</th>
<th>Alternative IV options?</th>
<th>Consequences/ Severity</th>
<th>Other considerations</th>
</tr>
</thead>
</table>
| Intravenous fat emulsion (IVFE) | No | No | • Essential fatty acid deficiency (EFAD)
• Malnutrition/poor growth
• Hypertriglyceridemia and/or glucose intolerance due to excessive administration of glucose | • Adult hospitalized patients on PN <2 weeks, should not receive intralipid unless essential
• Adult patients on >2 weeks PN should receive 100g fat per week in order to prevent EFAD
• Patients with glucose intolerance, severely malnourished patients, pregnant women, and pediatric/neonatal patients should receive intralipid on a daily basis |
| Amino acids | No | No | • Use of a less concentrated stock solution may cause fluid overload
• Electrolyte abnormalities, compatibility differences between amino acid stock solutions
• Inability to provide PN if completely unavailable
• Increased cost of using off-contract products
• Increased risk of contamination and instability with compounded products | • Restrict high concentration products (>10%) for fluid restricted patients
• Use commercially available premixed PN formulations if clinically appropriate
• Increase restriction criteria for use of PN
• Avoid manipulation of amino acids from original container to avoid risk of contamination/instability
• Verify PN compounding processes if amino acid product is changed, as amino acid solutions are not directly substitutable (i.e. variances in pH, phosphorus content, calcium-phosphorus solubility, etc.) |
| General considerations for electrolytes | • Multiple changes in electrolytes due to shifting shortages may lead to errors
• Decrease amount given to adults to conserve for neonatal and pediatric patients
• Decrease use of IV supplementation outside of PN: ICU replacement algorithms/protocols, use of IV products for oral liquid formulations
• Increase monitoring when making changes or restricting amounts in PN – long-term/home patients especially
• Increased cost of off-contract or compounded products
• Ability to use compounded electrolyte products in PN (may increase risk of contamination)
• Utilize oral/enteral electrolyte and premixed products when possible for replacement therapy
• Use premixed PN products if possible | • Consider using alternative IV phosphate salt and balance sodium and potassium as necessary
• Maintain awareness of potassium and sodium content when changing phosphate salts
• Utilize oral/enteral products when clinically able
• Conserve supply for neonatal/pediatric patients and those with medical need for phosphorus (reduce to least possible amount) |
| Potassium phosphate & sodium phosphate | Yes – many oral phosphate products | Potassium phosphate or sodium phosphate | • Hypophosphatemia if both potassium and sodium phosphate unavailable
• S/S hypophosphatemia: respiratory compromise, hypoxia, decreased cardiac contractility, weakness, neurologic dysfunction, seizures, death | • Consider using alternative IV phosphate salt and balance sodium and potassium as necessary
• Maintain awareness of potassium and sodium content when changing phosphate salts
• Utilize oral/enteral products when clinically able
• Conserve supply for neonatal/pediatric patients and those with medical need for phosphorus (reduce to least possible amount) |
<table>
<thead>
<tr>
<th>Component</th>
<th>Oral options?</th>
<th>Alternative IV options?</th>
<th>Consequences/ Severity</th>
<th>Other considerations</th>
</tr>
</thead>
</table>
| Potassium acetate & sodium acetate | Potassium chloride, sodium bicarbonate | Other salt forms | • Acidosis if unable to provide enough acetate as either sodium or potassium acetate | • Consider using alternative potassium salts as clinically able
 • Use oral/enteral potassium for replacement where possible
 • Use premixed IV products as much as possible and avoid potassium acetate additive to IV fluids. |
| Sodium chloride | Yes- However, oral options do not serve the same clinical purpose | Less concentrated stock solutions | • Alkalosis if using excessive acetate salts
 • Fluid overload if using less concentrated products
 • Development of hyponatremia
 • S/S hyponatremia: headache, lethargy, N/V, muscle cramps and/or weakness, seizures, coma, death | • Inability to provide adequate nutrition in neonatal and pediatric patients if less concentrated stock solution is used due to volume limitations
 • Consider using alternative IV salt (i.e. sodium acetate) where appropriate
 • Consider mixing other IV medications in 0.9% NS instead of D5W and/or changing other IV fluids to 0.9%NS if appropriate |
| Magnesium sulfate | Yes, but causes diarrhea | Magnesium chloride | • Hypomagnesemia
 • S/S hypomagnesemia: ECG changes and arrhythmias, seizures, coma and death
 • Risk of compatibility problems if other salts used | • Lack of compatibility data with magnesium chloride
 • Utilize premixed IV magnesium products
 • Minimize use of IV magnesium additives to intravenous maintenance fluids |
| Calcium gluconate | Yes, other salt forms more common | Calcium chloride | • Hypocalcemia
 • S/S calcium deficiency: tetany, neuromuscular, CNS and cardiovascular symptoms
 • Growth delays and metabolic bone disease in pediatric and long-term PN patients
 • Risk of compatibility problems if other salts used | • Lack of compatibility data with calcium chloride in PN formulation (PN solubility curves are based on calcium gluconate)
 • If removed from PN and calcium chloride administered outside of PN, need for central IV access
 • Necessity to increase monitoring of serum calcium, albumin, and ionized calcium concentrations
 • Consider multi-electrolyte products and standardized PN products that contain calcium where clinically appropriate |
| General considerations for TE and MVI products | | | • Should not use pediatric products in shortage of adult products or adult products in shortage of pediatric products
 • Increased monitoring for deficiencies when restricting or eliminating products from PN
 • Increased cost of off-contract or compounded products
 • Ability to use compounded products in PN (may increase risk of contamination)
 • Avoid the use of IV products for oral liquid formulations and administration
 • If eliminating or decreasing dose of vitamins or TE, monitor serum levels on monthly basis for long term PN patients |
<table>
<thead>
<tr>
<th>Component</th>
<th>Oral options?</th>
<th>Alternative IV options?</th>
<th>Consequences/ Severity</th>
<th>Other considerations</th>
</tr>
</thead>
</table>
| MTE-5/ MTE-4 | See individual TEs | Other MTE products, individual TEs | • See individual TEs | • Conserve by reducing dose by 50% or consider dosing on non-daily basis (i.e. 3 days per week)
• If also receiving EN, consider omitting TE for 1st month of PN in adult patients if not previously on PN, non-critically ill, with no documented deficiencies
• Consider administering individual TE if products available |
| Adult MVI | Yes | Some components available individually | • Vitamin deficiencies | • Avoid use for non-PN indications – i.e. restrict “banana bags”
• Conserve MVI by reducing dose by 50% or administering on non-daily basis
• Education necessary for home PN patients when reducing frequency
• Avoid use of pediatric MVI |
| Pediatric/ Neonatal Trace Elements | Yes; some individual trace elements | Yes; trace element combination products | • Deficiencies (see individual trace elements) | • Avoid use of adult trace elements |
| Pediatric MVI | Yes | Some components available individually | • Vitamin deficiencies
• Monitor for vitamin deficiencies and aluminum toxicity | • Maintain awareness of components of available MVI products; products differ in components and additional supplementation may be necessary
• Use enteral route where appropriate
• Consider administration of 50% dose in select patients
• Reserve pediatric MVI for patients <2.5 kg or patients less than 36 weeks gestational age
• May consider use of adult MVI product in patients >2.5 kg |
| Selenium | Yes | Yes; multiple trace element combination products | • Cofactor for glutathione peroxidase, important in protecting cells from oxidative damage
• Deficiency takes years to develop in otherwise healthy individuals
• S/S of selenium deficiency include: cardiomyopathy, myalgias, impaired cellular immunity, hemolysis | • Use oral/enteral supplementation where possible |
<table>
<thead>
<tr>
<th>Component</th>
<th>Oral options?</th>
<th>Alternative IV options?</th>
<th>Consequences/ Severity</th>
<th>Other considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc</td>
<td>Yes (some may be difficult to administer in pediatric patients)</td>
<td>Yes; zinc chloride, zinc sulfate</td>
<td>- Cofactor for several enzymes, helps maintain normal growth, skin hydration, and senses
• s/s of zinc deficiency include: dermatitis, alopecia, decrease appetite/anorexia, altered taste, immune system compromise and poor wound healing</td>
<td>Use oral and enteral supplementation if possible</td>
</tr>
<tr>
<td>Chromium</td>
<td>No</td>
<td>Yes; multiple trace element combination products</td>
<td>- Necessary for glucose tolerance, carbohydrate, lipid and protein metabolism, and peripheral nerve function
• S/S of chromium deficiency include: peripheral neuropathy, encephalopathy, glucose intolerance, hyperlipidemia, fatigue</td>
<td>Generally no need to supplement during shortage unless s/s of clinical deficiency present</td>
</tr>
<tr>
<td>Copper</td>
<td>Yes (some may be difficult to administer in pediatric patients)</td>
<td>Yes; multiple trace element combination products</td>
<td>- Cofactor for serum ceruloplasmin and helps maintain normal rates of red and white blood cell formation, bone formation, skeletal mineralization and integrity of connective tissue
• s/s of copper deficiency include: anemia, neutropenia, bone demineralization, hair and skin depigmentation, impaired elastin formation, hypotonia, and central nervous system dysfunction</td>
<td>Use oral/enteral supplementation if possible</td>
</tr>
<tr>
<td>Manganese</td>
<td>No</td>
<td>Yes; multiple trace element combination products</td>
<td>- Activator for several enzymes necessary for growth and maintenance of connective tissue, cartilage and bone
• Manganese deficiency (very rare); impaired growth/weight loss, poor bone formation/skeletal defects, abnormal glucose tolerance, change in hair growth/color, dermatitis, altered lipid metabolism, N/V</td>
<td>Manganese is generally a contaminant
• No need to supplement during shortage, unless s/s of deficiency are present</td>
</tr>
<tr>
<td>Component</td>
<td>Oral options?</td>
<td>Alternative IV options?</td>
<td>Consequences/ Severity</td>
<td>Other considerations</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Carnitine/ levocarnitine</td>
<td>Yes</td>
<td>No</td>
<td>• Carnitine is an endogenous substance used for energy metabolism</td>
<td>• Monitor weight gain, triglycerides, free and total serum carnitine levels and acylcarnitine levels</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Carnitine deficiency may develop</td>
<td></td>
</tr>
<tr>
<td>Cysteine</td>
<td>No</td>
<td>No</td>
<td>• Nutrient imbalances, especially in neonates</td>
<td>• Dose conservation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Change in calcium-phosphorus solubility</td>
<td>— Conserve for patients <1 kg or neonates >1 kg who are at high risk for cysteine deficiency (i.e. post-surgical, sepsis)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>— 20 mg/kg L-cysteine is adequate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• If providing 3 g/kg/day of protein, no need to supplement PN with L-cysteine as this will provide adequate methionine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Avoid using L-cysteine to re-establish catheter patency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Add cysteine to PN as a single product rather than to amino acid solution; add prior to calcium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Re-evaluate calcium-phosphorus solubility data if L-cysteine removed from PN where previously added</td>
</tr>
</tbody>
</table>

References