

CYP450 Cascade: Pharmacodynamic implications for contemporary practice

Sally K. Miller,
PhD, ACNP-BC, ANP-BC, FNP-BC, GNP-BC, CNE, FAANP
Senior Lecturer
Fitzgerald Health Education Associates, Inc.
Clinical Professor

Drexel University College of Nursing and Health Professions Nurse Practitioner

Nevada Health Centers

© Fitzgerald Health Education Associates, Inc

Objectives

- At the conclusion of this presentation the attendee will:
 - Compare and contrast mechanisms of drug interactions.
 - Describe the CYP450 metabolism cascade.
 - Analyze a clinical example of a CYP450-mediated prescribing error.

© Fitzgerald Health Education Associates, Inc.

Drug Interactions – Types

- Drug interactions occur in a variety of ways
 - Drug-food
 - Drug-herbal
 - Drug-disease
 - Drug-drug

Sourcehttp://www.ida.gov/Drugs/DevelopmentApprovalProcess/DevelopmentReso urces/DrugInteractionsLabeling/ucm110632.htm#Preventing_Drug Interactions_accessed 3.14.13.

•		
•		

Drug-food Interactions

- Mostly related to inhibition of absorption
- Risks related to decreased absorption of necessary therapeutic agents
 - Tetracycline and calcium products

© Fitzgerald Health Education Associates. Inc.

Drug-herbal Interactions

- ASA, NSAIDs, platelet aggregate inhibitors, warfarin – Dong-quai and garlic, ginkgo
- St. John's wart Antidepressants, indinavir, cyclosporine, digoxin

© Fitzgerald Health Education Associates, Inc.

Drug-herbal Interactions (continued)

- Generally, patients should be cautious with herbal supplements if taking any of the following:
 - Blood pressure medications
 - Blood thinners (anticoagulants, antiplatelet agents, nonsteroidal antiinflammatory drugs such as aspirin, ibuprofen or naproxen)

-			

Drug-herbal Interactions (continued)

- Generally, patients should be cautious with herbal supplements if taking any of the following: (cont.)
 - Diabetes medications
 - Drugs that affect the liver
 - Cardiovascular medications

© Fitzgerald Health Education Associates, Inc.

Drug-disease Interactions

 Liver disease- Decreased liver function may have significant impact on metabolism of drugs, producing both elevated or suppressed levels.

© Fitzgerald Health Education Associates, Inc.

copyright 2005 Fitzgerald Health Education Associates, l	lnc
--	-----

Drug-disease Interactions (continued)

- Renal disease often produces elevated levels of drugs requiring renal excretion of active metabolites.
- Therapeutic agents often exacerbate symptoms or progression of a comorbid condition.

© Fitzgerald Health Education Associates, Inc.

Drug-disease Interactions (continued)

- Liver disease and cephalosporins
- · Renal disease and NSAIDs
- Therapeutic agents exacerbate another condition.
 - Thiazide diuretics and T2DM
 - Beta agonists and HTN
 - Steroids and osteoporosis
 - -CCB and CHF
 - Lithium and hypothyroidism

© Fitzgerald Health Education Associates, Inc.

11

Drug-drug Interactions

- Many drug-drug interactions related to the impact of one drug on the metabolism of another.
- CYP450 metabolism interactions implicated in a variety of well-known drug interactions.

© Fitzgerald Health Education Associates, Inc.

CYP450 Drug Metabolism

- Most drugs are produced in a vehicle that has some degree of lipophilia.
- In order for drugs to be effective, they must be able to enter target cells.

© Fitzgerald Health Education Associates, Inc.

CYP450 Drug Metabolism (continued)

- Most are designed to be lipophilic so that they can penetrate the cell membrane and proceed to site of action.
- When the body perceives the introduction of an exogenous drug, its protective mechanisms immediately begin steps to eliminate it from the body.

 PREPARENT HABIT EDUCATION ASSOCIATES, INC.

 15

CYP450 Drug Metabolism (continued)

- In many cases this requires converting the drug from its lipophilic form to a hydrophilic form that can be excreted by the kidney.
- While there are other physiologic mechanisms that can convert drugs from lipophilic to hydrophilic, the majority are converted by the CYP450 enzyme cascade.

© Fitzgerald Health Education Associates. Inc.

16

CYP450 Drug Metabolism (continued)

- The cascade is a series of oxidation-reduction reactions that result in a hydrophilic metabolite ready for excretion.
 - Source- Katzung, B.G. (2011). Basic and Clinical Pharmacology, (11th ed.). NY: McGaw-Hill Medical

© Fitzgerald Health Education Associates, Inc.

N

CYP450 as a Mechanism for Drug-drug Interactions

- Numerous therapeutic agents are substrates of the CYP450 oxidation, reduction system.
- A variety of other therapeutic agents are either inhibitors or inducers of a CYP450 pathway.
- When inhibitors and substrates are given together, metabolism of the substrates is impaired, and toxic levels can occur.

Commonly Encountered CYP450 Inhibitors (3A4,5,7)

- Amiodarone
- Fluvoxamine
- Cimetidine
- · Grapefruit juice
- Ciprofloxacin
- Itraconazole
- Clarithromycin
- Ketoconazole
- Diltiazem
- Mifepristone
- Erythromycin (E-mycin®)
- NorfloxacinNorfluoxetine
- (E-IIIyCIII'')
- Marananil
- Fluconazole
- Verapamil

© Fitzgerald Health Education Associates, Inc.

Commonly Encountered CYP450 Substrates (3A4,5,7)

- Macrolide antibiotics
- Buspirone
- Benzodiazepines
- Caffeine and ergotamine
- HIV antivirals
- (Cafergot®)
- Prokinetics
- Morphine
- Antihistamines
- Propranolol
- CCB
- Sildenafil
- Statins
- Zolpidem
- Steroid compounds
- Lidocaine

© Fitzgerald Health Education Associates, Inc.

21

copyright 2005 Fitzgerald	Health Education	Associates,	In
---------------------------	------------------	-------------	----

Commonly Encountered CYP450 Inhibitors (2D6)

- Amiodarone
- Paroxetine
- Bupropoin
- Quinidine
- Chlorpromazine
- Ranitidine
- Cimetidine
- Ritonavir
- Citalopram
- Sertraline

- Duloxetine
- Terbinafine
- Escitalopram
- Ticlopidine
- Metoclopramide
- H1RA

Commonly Encountered CYP450 Substrates (2D6)

- Beta blockers
- TCAs
- Antipsychotics
- Antidysrhythmics
- Dextromethorphans
- SNRIs
- SSRIs

© Etznerald Health Education Associates Inc.

Other CYP450 Subtypes

- CYP1A2
- CYP2C9
- CYP3C19
- CYP2E1
- Others exist
 - Known substrates, inhibitors and inducers not as commonly used

Early Case Report Healthy Young Adult

© Fitzgerald Health Education Associates, Inc.

25

Syncope in a 39 Year-old Female

- A 39 year-old female, essentially healthy, being managed with terfenadine for allergies
- Treated with a 10-day course of cefaclor 250 mg TID for infection of the respiratory tract
- Presents for evaluation of a two-day history of syncope

- Source- B. P. Monahan; C. L. Ferguson; E. S. Killeavy; B. K. Lloyd; J. Troy; L. R. Cantilena Jr. *JAMA*; 1990:2788-2900 o Fitzgerald Health Education Associates, Inc.

Syncope in a 39 Year-old Female (continued)

- The patient was having episodes of Torsades de Points.
- Serum analysis revealed elevated levels of terfenadine and proportionately low levels of its metabolite.
- Upon interview the patient admitted self-medicating with ketoconazole 200 mg BID for vaginal yeast.

- Source- B. P. Monahan; C. L. Ferguson; E. S. Killeavy; B. K. Lloyd; J. Troy; L. R. Cantilena Jr. *JAMA*; 1990:2788-290

Syncope in a 39 Year-old Female (continued)

- · This was the first case of terfenadinerelated cardio toxicity when used in prescribed doses.
- Terfenadine was taken off the US market several years later.
- Similar occurrences resulted in the removal of cisapride from the US market in 2000.

- Source- B. P. Monahan; C. L. Ferguson; E. S. Killeavy; B. K. Lloyd;
J. Troy; L. R. Cantillena Jr. JAMA; 1990:2788-290
© Fitzgerald Health Education Associates, Inc.
28

Typical Outpatient Scenario

Clinical Presentation of a 61 Year-old Female with Dyslipidemia on Statin Monotherapy

© Etznerald Health Education Associates Inc.

29

Patient History

- Chief complaints
 - Subtle shortness of breath, pleuritic chest pain, worsening muscle weakness over the last week
 - Management of pneumonia (outpatient treatment failure)

Patient History (continued)

- History
 - -61 year-old female
 - Multiple chronic conditions are wellcontrolled
 - Dx with CAP and treated with clarithromycin 500 mg BID x 14 days
 - Improved, then symptoms returned

© Fitzgerald Health Education Associates, Inc.

31

Physical Exam

- Physical exam
 - -61 year-old female in mild respiratory distress at rest; Ht: 5'4" (164.6 cm); Wt: 187 lbs (84.8 kg)
 - -BP: 129/67 mm Hg, Pulse: 91 bpm, RR: 32 bpm
 - -Temp: 99.2°F (37.3°C); SaO_2 (2L O_2) 93%

© Fitzgerald Health Education Associates, Inc.

Medication History

- · Lisinopril 40 mg QD
- Atorvastatin 80 mg QPM
- Levothyroxine 0.1 mg QD
- Beclomethasone nasal inhaler BID
- Doxazosin 4 mg QD
- Ibuprofen 400 mg PRN
- Clarithromycin 500 mg BID

© Fitzgerald Health Education Associates. Inc.

34

Laboratory Values

- Past laboratory values (when dx'd with CAP)
 - Glucose: 85 mg/dL (4.7 mmol/L) - BUN: 23 mg/dL (8.2 mmol/L) - Cr: 1.2 mg/dL (106.1 μmol/L)
 - -BUN/Cr: 19.2
 - Uric acid: 5.9 mg/dL (350.9 µmol/L)Phos: 3.7 units/dL (1.2 mmol/L)Calcium: 9.6 mg/dL (2.4 mmol/L)

© Fitzgerald Health Education Associates, Inc.

Laboratory Values (continued)

- Past laboratory values (when dx'd with CAP) (cont.)
 - -Total protein: 7.2 g/dL (72 g/L)
 - Albumin: 4.0 g/dL (40 g/L)
 - Globulin: 3.2 g/dLAlk phos: 55 U/LGGTP: 21 U/L
 - -ALT/AST: 19/19 U/L
 - -LDH: 125 U/L

_		
-		
-		
-		
-		
-		
-		
_		
-		
-		
-		
-		
-		
-		
-		
-		

Laboratory Values (continued)

- Past laboratory values (when dx'd with CAP) (cont.)
 - Na: 140 mg/dLK: 4.0 mg/dL
 - -CI: 103 mg/dL
 - -CO₂: 28 mg/dL A1c: 5.6% (.056 proportion)
 - -TSH: 7.4 mIU/L

© Fitzgerald Health Education Associates. Inc.

Laboratory Values (continued)

- Past laboratory values (when dx'd with CAP) (cont.)
 - -WBC: 7.9 x 1000/cu mm -Hgb: 14.3 g/dL (143 g/L)
 - -HCT: 42% (.42 proportion)
 - -Plt: 304/mm³
 - -B₁₂: 404 pg/mL (298 pmol/L)
 - -Cholesterol: 215 mg/dL (5.6 mmol/L)

© Fitzgerald Health Education Associates, Inc.

Laboratory Values (continued)

- Past laboratory values (when dx'd with CAP) (cont.)
 - Triglycerides: 166 mg/dL (1.9 mmol/L)
 - -HDL-C: 41 mg/dL (1.06 mmol/L)
 - -VLDL: 33 mg/dL (.85 mmol/L)
 - Chol/HDL-C: 5.24 mg/dL (.14 mmol/L)
 - -LDL-C: 141 mg/dL (3.65 mmol/L)

Radiograph and Diagnosis

- Chest radiograph
 Right lobar
 consolidation with
 effusion
- Diagnosis

 Pneumonia, outpatient treatment failure
- Treatment

 IV extended spectrum penicillin

© Fitzgerald Health Education Associates, Inc.

1		N
I	•	

Laboratory Values (continued)

_	Past	Current
ALT (7-56)	19 U/L	143 U/L
AST (5-40)	19 U/L	599 U/L
LDH (105-333	3) 125 U/L	961 U/L
CPK (22-198)	-	20,990 U/L
CR	1.2 mg/dL	3.6 mg/dL
(106.1 µmol/L)	(318.2 µmol/L)

© Fitzgerald Health Education Associates, Inc.

Question

- The most significant finding in this patient is:
 - -LDL-C of 141 mg/dL (3.65 mmol/L)
 - -Low white count
 - -Triglycerides of 166 mg/dL (1.9 mmol/L)
 - Muscle weakness

© Fitzgerald Health Education Associates, Inc.

42	

copyright 2005	Fitzgerald	Health	Education	Associates,	In
----------------	------------	--------	-----------	-------------	----

Question

- Risk factors for rhabdomyolysis in this patient include:
 - Combination of ibuprofen and atorvastatin.
 - Combination of clarithromycin and atorvastatin.
 - Combination of lisinopril and atorvastatin.
 - All of the above.

© Fitzgerald Health Education Associates, Inc.

Question

- Recommended treatment options for this patient include hydration and...
 - -Treat elevated potassium.
 - Discontinue lovastatin.
 - -Continue lovastatin in divided doses.

44

-All of the above.

© Fitzgerald Health Education Associates, Inc.

Rhabdomyolysis in a 61 Year-old Female

- · Case discussion
 - Presenting complaint: Muscle weakness
 - Initial LFTs: Normal
 - -WBC: Low for pneumonia

Rhabdomyolysis in a 61 Year-old Female (continued)

- Risk factors for rhabdomyolysis in this patient
 - Tx with medications associated with myopathy
 - Macrolide/HMG-CoA reductase inhibitor interaction
 - Clarithromycin/atorvastatin

© Fitzgerald Health Education Associates, Inc.

Rhabdomyolysis in a 61 Year-old Female (continued)

- Risk factors for rhabdomyolysis in this patient (cont.)
 - High doses of HMG-CoA reductase inhibitors
 - Recommended atorvastatin dose: 10 to 80 mg daily

47

• This patient received 80 mg QPM.

© Fitzgerald Health Education Associates, Inc.

Where You'd Least Expect It

•	
-	
-	

A 46 year-old male...

- ...is admitted to the step down unit for management of altered mental status and depressed respirations
- His history is significant only for long-term chronic back pain managed with methadone

© Fitzgerald Health Education Associates, Inc.

A 46 year-old male... (continued)

- He was diagnosed with methadone toxicity
- The patient's methadone dose was stable and not recently changed
- It was determined that he did not purposefully or accidentally overdose

© Fitzgerald Health Education Associates, Inc.

A 46 year-old male... (continued)

- There were no new additions to his medication regiment recently
- His methadone was held for 3 days and he improved significantly
- A post-morbid analysis revealed that the only change in his circumstances was an attempt to quit smoking

© Fitzgerald Health Education Associates, Inc.

51

copyright 2005	Fitzgerald	Health	Education	Associates,	Inc

A 46 year-old male... (continued)

- Methadone is metabolized by both CYP3A4 and CYP1A2
- Certain hydrocarbons found in cigarette smoke are inducers of CYP1A2

© Fitzgerald Health Education Associates, Inc.

A 46 year-old male... (continued)

 As the patient decreased his cigarette use he decreased induction of an isoenzyme that metabolizes methadone

© Fitzgerald Health Education Associates, Inc.

Minimizing Drug Interactions

- Allergies
- · Vitamins and herbs
- Old drugs and OTC
- Interactions
- Dependence
- Mendel (family history)
 - Source- Centers for Research and Education on Therapeutics, USFDA, http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm110632.htm#Preventing_Drug_Interactions, accessed 3.14.13.

© Fitzgerald Health Education Associates, Inc.

54

copyright 2005	Fitzgerald 1	Health E	Education .	Associates,	Inc

References

- Indiana University Department of Clinical Medicine. (2009). CYP450 Drug Interaction Table. Available at http://medicine.iupui.edu/clinpharm/ddis/table.aspx, accessed 3.14.13.
- Katzung, B.G. (2011). Basic and Clinical Pharmacology, (11th ed.). NY: McGaw-Hill Medical

© Fitzgerald Health Education Associates, Inc.

55

References (continued)

Lynch, T., & Price, A. (2007). The effect of cytochrome P450 on drug metabolism, response, interaction, and adverse effects. *American Family Physician*, 76(3), 391-396. Available at http://www.aafp.org/afp/2007/0801/p39
 1.html, accessed 3.14.13.

© Fitzgerald Health Education Associates, Inc.

56

References (continued)

 USFDA (2009). Preventable adverse drug reactions. Available at http://www.fda.gov/Drugs/Developmen tApprovalProcess/DevelopmentResource s/DrugInteractionsLabeling/ucm110632. htm#Preventing Drug Interactions, accessed 3.14.13.

© Fitzgerald Health Education Associates, Inc.

References (continued)

 Wahawisan, J., Kolluru, S., Nguyen, T., Molina, C., & Speake, J. (2011).
 Methadone toxicity due to smoking cessation – a case report on the drug-drug interaction involving cytochrome P450 isoenzyme 1A2. Annals of Pharmacotherapeutics, 45(6). Retrieved October 6, 2012 from http://www.ncbi.nlm.nih.gov/pubmed/216 66091

© Fitzgerald Health Education Associates, Inc.

End of Presentation!

Thank you for your time and attention.

Sally K. Miller,
PhD, ACNP-BC, ANP-BC, FNP-BC, GNP-BC, CNE, FAANP
webite: www.fhea.com email: sally@fhea.com

© Fitzgerald Health Education Associates, Inc.